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ABSTRACT

We propose a machine learning approach based on hinge-loss Markov random fields to solve the problem of applying
reverb automatically to a multitrack session. With the objective of obtaining perceptually meaningful results, a set
of Probabilistic Soft Logic (PSL) rules has been defined based on best practices recommended by experts. These
rules have been weighted according to the level of confidence associated with the mentioned practices based on
existent evidence. The resulting model has been used to extract parameters for a series of reverb units applied over
the different tracks to obtain a reverberated mix of the session.

1 Introduction

There are no strong rules established for the task of ap-
plying reverberation to a multitrack session in order to
turn it into a mix, as different engineers have their own
processes and techniques. Recent studies have tried to
understand and analyse these practices in order to find
common ground [1] [2]. Although this research may
shed light on how different parameters of the reverbera-
tion are set by practitioners, a set of universal ground
rules is yet to be established.

Different intelligent mixing techniques have been de-
veloped in order to help musicians and producers either
alleviate their workload or improve the quality of their
creative work. Most effort has been focused on solving
automatic tasks [3] that can be interpreted in terms of
defined goals that a machine could easily solve. A series
of models for autonomous mixing and cross-adaptive
digital audio effects (DAFx) [4] [5] have been devel-
oped for different areas of the mixing process [6] such
as panning [7], equalisation [8] and compression [9].

The only effort for an automatic mixing tool that applies
artificial reverberation is limited to individual tracks
[10]. However, in a multitrack domain, the character-
istics of one track or the whole mix may influence the
decisions taken on another, so many of the approaches
suggested for single track audio cannot be scaled to
solve this problem.

2 Problem Formulation

In order to create an intelligent system capable of work-
ing independently in a meaningful way, it is necessary
to analyse how humans (in this case experts) conduct
different tasks [11]. Since a set of universal fixed rules
has not yet been found that governs the application
of reverberation to a multitrack session, a system that
allows knowledge-informed prediction with different
levels of confidence needs to be researched. A summary
of best practices extracted from the analysis of previous
research on the use and application of reverberation,
alongside the document they have been extracted from,
can be found in Table 1. To translate these into logical
and arithmetic statements, we have parametrized them
according to different audio features and characteristics
and decomposed them into smaller units.

Designing an automatic multitrack reverberator requires
a model capable of either extracting a joint probability
distribution from data or a structure that represents all
the dependencies for a domain with a high level of
interconnection. Due to the subjective characteristics of
the use of reverberation, the model should be flexible
and interpretable. The approaches that have been taken
in intelligent mixing before either use hard constraints
(fixed rules) and curve fitting models, linear dynamical
systems [6], or learn the rules from a dataset, making
them unsuitable for solving our problem.
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No.  Practice

Extracted from

1 Percussive instruments require shorter and denser reverbs than sustained sounds [12] [13][14] .
2 Speech and voiced sounds may demand an increase in density and length of early reverberation but [15] [12]
the reverberation tail should be kept short.
3 It is, in general, better to send less low-frequency elements to a reverberator. [13]
4 Tracks that present higher spectral centroid allow for higher amount of reverb. [13]
5 Tracks with lower loudness and/or lower spectral flatness also can be more reverberated. [13]
6 Clarity may be increased when the spectral occupation is high. [13]
7 There is a suggestion that ties faster tempo to shorter decay times. [13][1]
8 Reverb time is correlated with a measure of the autocorrelation of the signal. [13]
9 Reverb time is inversely correlated with both spectral flux and track’s tempo (in bpm) and this effect [13]
is even stronger when applying a logarithmic transformation to both features.
10 Itis recommendable to keep the pre-delay just past the Haas zone. [13][1]
11 Some engineers look for the closest subdivision of tempo above the Haas zone to set the predelay. [13][1]
12 Sparse mixes allow, in general, for greater reverberation times. [14][1]
13 Mixes with -9 dB of relative reverb loudness are rated as too reverberant. [2]
14 It is preferred to have too little reverb rather than too much. [2]
15 Bright reverbs may be prefered for dull sounds and vice versa. [13]
16 High fidelity reverbs may be used with “trashy” sounds and vice versa. [13]

17 Reverb brightness usually increases with reverb time.

[13]

Table 1: Summary of the different best practices gathered during our literature research and used in the PSL
template, alongside the document they have been extracted from.

Furthermore, models typically used to solve relational
learning and structured prediction problems do not fit
our requirements, either because they lack expressivity
[16], result in a slow convergence [17] or need to be
trained on large amounts of data.

We make use of a probabilistic graphical model that
enables efficient inference and prediction in complex
structured domains, the Hinge-loss Markov Random
Fields (HL-MRF) graphical model [18]. The different
elements of HL-MRF models can be defined in terms of
Probabilistic Soft Logic (PSL) [19], a general-purpose
probabilistic programming language, unveiling a pow-
erful framework for structured prediction. HL-MRFs
and PSL have been previously used to solve relational
problems, but, as far as we are aware, have not been
applied before to any mixing or audio processing task.

2.1 Effect Architecture

Our proposed architecture follows a scheme similar to
that of other adaptive and cross-adaptive DAFx designs
[4] but with the introduction of PSL as a way to infer the
different control parameters in such a complex domain.

The structure of the intelligent multitrack reverberator is
presented in Figure 1. This scheme has been simplified
to show only two tracks, but it is scalable to N tracks,
so can be used in almost any multitrack mixing process.

This process could be segmented in five distinct stages:
e Stage 1: Tracks are analysed and the important fea-
tures extracted individually.

e Stage 2: Different features are processed (scaled,
normalised, etc) and the cross-adaptive features com-
puted.

track 1 | --------- 4 P | track 2

feature | feature
extraction | i i | extraction

cross-adaptive
processing

p— NP

PSL template

inference
\ 4 T

reverb |
unit

\ 4 \ 2
Dry Mix f-- :(): Wet Mix
\ 2
Final Mix

Fig. 1: Architecture of our intelligent multitrack rever-
beration (simplified for two tracks).

e Stage 3: A first PSL template is created to obtain
semantic labels in terms of the different features via
HL-MRF.

e Stage 4: A second PSL template is created using
the rules extracted from the gathered knowledge in-
stantiated to the features of this specific mix and the
inferred semantic descriptors from the previous stage.

e Stage 5: The reverberation parameters are inferred
by computing the HL-MRFs for the rules listed on
the template.
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e Stage 6: As not every set of parameters can be im-
plemented, an optimisation method obtains the com-
bination that better approximate the desired target.

3 Machine Learning for Structured
Prediction

3.1 Markov Random Fields

For structure prediction, MRFs enable the possibility of
using logical relationships to define probabilities. They
do this by means of different scores (or weights) that
are applied to probability distributions using potentials.
These potentials model the behaviour of a domain by
defining a probability density function in terms of logi-
cal clauses expressing variable relations hard to model
otherwise.

3.2 Hinge-Loss Markov Random Fields

Hinge-loss Markov random fields define probability
density functions over n continuous variables [19] with
a domain equal to [0, 1]" such that a maximum a poste-
riori is reached as a solution to a MAX SAT problem!
associated with Lukasiewicz logic[19].

This optimisation problem can be expressed in terms of
weighted distances to satisfaction that penalise how far
the linear constraint is from being satisfied. Constrained
hinge-loss energy functions constructed in terms of
these weights allow the specification of either hard
(must be satisfied) or relaxed linear constraints. HL-
MRFs are then expressed over these functions so that
states with lower energy are more probable [18].

3.3 Probabilistic Soft Logic

Probabilistic Soft Logic (PSL) is defined as “general-
purpose framework for joint reasoning about similarity
in relational domains” [20] and provides an intuitive
interface for HL-MRFs as it allows to create templates
for potentials and constraints using first-order logic
rules as well as linear and quadratic constraints [19].

PSL uses predicates to specify relationships in the input
data. When the predicate is combined with a defined
input, it is called an atom, and each substitution of the
input in the atom is called a ground atom. Ground atoms
represent observations, can take values in [0,1] [19] and
are the base of the implementation of PSL models.

PSL predicates can be defined either as closed (all the
atoms are observations over the data) or open (some of
the atoms are unknown).

HL-MRF templates are created using logical (disjunc-
tive clauses of atoms or negations of atoms) or arith-
metic (linear combination of atoms) PSL rules that can

A MAX SAT problem is such that “maximizes the weight of
satisfied clauses in a knowledge base” with a boolean assignment
[19].

have an associated weight. Unweighted rules represent
hard linear constraints, whereas weighed rules are used
to penalise the satisfaction of the corresponding rule.
Weights can potentially be learned from data using dif-
ferent methods (e.g. maximum likelihood estimation
(ML)).

Once each of the atoms has been grounded, rules are
translated into linear constraints and potentials and
mapped to HL-MRFs.

4 Methodology and Implementation

4.1 A Reverberation Algorithm with Perceptual
Control

The algorithm implemented for each of the reverber-
ation units in our architecture is based on the work
presented in [21]. This reverberator can be controlled
by measures of reverberation : reverberation time (7o),
density (D), clarity (C), central time (7¢) and spectral
centroid (S¢). These measures are then mapped to the
parameters of the reverberator by grounding their defi-
nition to the parameterized response of the system.

However, not all combinations of measures can be im-
plemented. A solution to this problem is provided in
[22] via an optimisation process presented as a numeri-
cal problem.

Our particular implementation includes some small
modifications to adapt the algorithm to our purpose.
We first adapted the network to produce a mono output
and then allowed the use of a rudimentary pre-delay via
a delay line before the comb filters. A representation of
the wet signal flow of the final reverberator is shown in
Figure 2.

di, 91

d2, 9

d3, g3 0
we

delay d4 194

ds, gs

des 96

HHHHHE

Fig. 2: Diagram of our modified version of Rafii and
Pardo’s reverberator [21]. Ty represents the
amount of pre-delay (in ms), d; and g; are
the delay and gain factors of the comb-filters
(i =1...6) and the allpass filter (i = 7), f, the
cut-off frequency of the low-pass filter and G a
gain parameter.
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4.2 Feature Extraction Process

In order to define the rules in terms of characteristics
of the different tracks, different features need to be ex-
tracted from the tracks to characterise them in a mean-
ingful way.

13 different features were chosen based on previous
use and analysis and their relationship with perceptual
descriptors, of which 6 correspond to spectral character-
istics, 2 to temporal characteristics, 2 to dynamics. Ad-
ditionally, three different cross-adaptive features were
also extracted from the data: tempo of the dry down-
mix, percussivity weights that indicate how percussive
a track is with respect to the rest of the multitrack, and
the relative loudness of each track with respect to the
dry down-mix. All these features are presented in Table
2).

Feature Related to References

Spectral Centroid brightness [25]

Brightness brigthness, presence [23]

Spectral Roll-off bandwith,  voiced/un- [23] [26]
voiced sounds

Spectral Flatness noisiness [23]

Spectral Flux stationarity, pitch varia- [23] [25]
tion

Roughness dissonance, “buzziness” [23]

Autocorrelation tempo [26] [25]

Zero-crossing noisiness, high- [26] [25]

Rate frequency content

Tempo tempo [23][13]

Relative Loudness  loudness [13]

Crest Factor percussivity, dynamic [13][9]
range

Low Energy sustained/transient [13][9]
sounds

Percussivity percussivity [9]

Weights

Table 2: List of the different features and their relation-
ship to perceptually meaningful descriptors

The feature extraction process was performed in Mat-
lab and non-adaptive features were extracted using the
MIRtoolbox [23]. Each track was previously downsam-
pled to 22050 kHz to reduce the computational cost.
Afterwards, a structured segmentation strategy was car-
ried out, as it has proven to provide better accuracy for
multitrack contexts [27]. The segmentation frame size
was based on the tempo of the down-mix. Each differ-
ent frame was also segmented into smaller 23 ms frag-
ments. The value for each feature for the tempo-based
fragments was given as the average of all subframes.

Once all features were obtained, a re-scaling process
was carried out to map all the values to a [0,1] range
for their use in the PSL template. Features were scaled
using a linear minimum/maximum process with lim-
its based on observations from different multitracks.

Logarithmic scaling was applied over some features to
provide a better approximation to the response of the
human auditory system.

4.3 Designing the PSL Templates

In order to model dependencies between features and re-
verb parameters, two PSL templates were laid out defin-
ing the rules used in the inference process. The best
practices studied from the literature were laid out as
either logical clauses or linear combinations. A weight
dependent on the amount of evidence existent for the
related practice is used to reward those that have been
contrasted or penalise others.

4.3.1 Universal Constants

This first input represents all the elements over which
the model will be grounded. We propose four different
types to define the model’s universe:

e Track, an identifier for each track (the name of the
track).

e Feature, corresponding to all the relevant features
that have been extracted from the different tracks.

e Property, refers to a set of semantic descriptors that
will characterise each of the tracks in terms of dif-
ferent features. In this case, we used six different
properties that are pair-wise complementary: bright/-
dark, percussive/sustained and voiced/unvoiced.

e Parameter, a list of the different reverb parameters
to be controlled: pre-delay, Tgo, density, clarity, cen-
tral time and spectral centroid [21].

4.3.2 Predicates

Predicates are used to form a relationship between two
types of constants. Our model is built around three
different predicates.

e Feature is a closed predicate that has two different
arguments: Track and Feature. The observation of
each singular atom is given by the value obtained
during the analysis of the track for a given feature
normalised to [0,1].

e Property defines the extent to which each track re-
lates to a semantic descriptor. Properties are pair-
wise complementary 2. The value of the HL-MRF
random variable that will be induced to each atom
indicates how it will be satisfied when specified for a
given track.

o Parameter takes Track and Parameter as arguments.
The values associated with the different random vari-
ables will define the settings of our reverberator units.

2For each property defined there is another one that represents the
negation of its atoms.
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4.3.3 Complement Definition

Since we want to define some properties as complemen-
tary, it is required to support this relationship with rules.
We use unweighted rules that assure that the inequality
is always satisfied. There are two approaches that can
be taken, logical or arithmetic rules (the latter being
more simple to use).

Properties are structured in pairwise complementary
opposites, meaning that each different signal will be
defined as a combination of both (for example, a bass
track could be 90% “dark” and 10% “bright”, but not
80% ““dark” and 40% “bright”). Although this increases
the computational cost of the PSL model, it enables a
more intuitive syntax when defining the rules.

4.3.4 Semantic Labels as a Function of the
Signal’s Features

Labels have a meaning only if we establish dependen-
cies. The first PSL template is related to the mappings
between features extracted from the signals and the se-
mantic properties defined in the model that will be used
to create the rules described in Table 1.

Bright vs Dark The brightness of an audio signal
has always been associated with higher values of the
spectral centroid [28]. However, another measure of the
perception of timbre is the so-called brightness estima-
tor, which calculates the percentage of spectral energy
up to a cutoff frequency (usually 1 to 3 kHz). Moreover,
the spectral roll-off, as a representation of the signal’s
bandwidth, can give an idea of the high-frequency con-
tent. Based on previous research, one could argue that
both roll-off and centroid have the same effect on the
perceived timbre [29]. However, we do not know of
any cross-comparison with the high-frequency content
measure.

Percussive vs Sustained Several methods have been
used in Music Information Retrieval to account for the

percussive or transient qualities of a signal. The most

used measure of percussivity is the crest factor, but the

low-energy ratio seems to better correlate to this quality.

In addition, cross-adaptive percussivity weightings can

be used within a mix context [9].

Voiced vs Unvoiced To distinguish between voiced
and unvoiced sounds (less tonal and noisier), the zero-
crossing rate has been proposed as an idea of the dis-
tribution of energy over frequency (higher rates imply
higher frequencies) [30]. Another effective parameter
in voice detection is spectral flatness, which indicates
the noisiness of the signal (flat spectrum) or its tonal
character (non-flat spectrum) [31]. Finally, the spectral
roll-off may also be correlated, as the greater part of
the spectral energy of voiced sounds is located in the
lower bands. More specifically, frequency bands under
3kHz correspond with voiced sounds whereas unvoiced

sounds accumulate stronger energy in the 3 to 4 kHz
bands [32]. Therefore, the brightness measure, when
specified at 3 kHz, can also provide information about
the voiced quality of a signal.

4.3.5 Knowledge-based Rules

In the second PSL template rules related to the gathered
expert knowledge provide the interconnection between
the extracted data and the reverb parameters that will
be used to apply the effect to different tracks.

The range of weights assigned to the rules was deter-
mined based on experimentation with different tem-
plates. In a range from O to 10, higher weights were
associated with rules that have the potential for being
grounded but not yet defined as linear constraints, while
lower weights correspond to particular suggestions that
do not hold enough evidence to be defined as common
practices. The rest of the weights were assigned either
based on the comparative amount of evidence in the lit-
erature or on correlation values extracted from previous
research.

If a relationship between different atoms needs to be
defined, it has to be decomposed into rules that cover
all different explanations via the definition of comple-
mentary operations.

5 Results

We first tested the whole system over a simplified dataset
comprised of four selected tracks extracted from a real
complete session®. Simplified version comprised of
lead voice, keys, drums and bass from the Open Multi-
track Testbed [34]. The selection was made to evaluate
the labelling process and to see how the reverberation
parameters were obtained.

5.1 Label Assignment and Mapping

As seen in Figure 3, the system works well for la-
belling percussive instruments and to discern bright
instruments. If we focus on the percussive qualities,
the singing voice is labelled as the less percussive (and
therefore more sustained) of all the tracks and the drums
get a high rating for this property. Brightness is less
easy to understand, but the keys and the bass are as-
sociated with a lower amount (0.2 or 20%) as may be
expected. Discriminating between voiced and unvoiced
tracks seems to also be satisfactory, as drums are asso-
ciated with the lower value for ‘voiced’. Nevertheless,
it can be appreciated how this property is clustered in
the upper range, indicating a possible bias.

From the analysis of the average properties assigned

to 148 tracks from 6 different sessions® available on

the Open Multitrack Testbed in Figure 4 we can see

3Supporting materials including audio examples from the refer-
ence sessions mentioned in this document are available at:
https://code.soundsoftware.ac.uk/projects/multitrackreverb
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Fig. 3: Association of the different properties to each

track of our simplified multitrack session.

how the system is biased towards rating tracks as highly
voiced (over 80%) and less percussive (under 20%).
This seems to be a result of how the features have been
scaled before filling the PSL template and not a problem
of the template itself. Limits used for feature scaling
may also be affecting negatively. In an ideal scenario,
the distribution of the different features over a large
number of tracks should be normal. However, a quick
look at Figure 6 shows that features such as percussivity
weights, spectral centroid are closely distributed around
more extreme values, introducing another bias in the
template.

| %
2 0.8 R
=
g
= 06 8
S
= 04 |
£
B
5
Z 02 :
0 | |
Bright Percussive Voiced
Semantic Descriptors (properties)
Fig. 4: Mean values for the normalised properties (la-

bels) assigned by the model for 148 tracks. Er-
ror bars represent the standard deviation of the
data.

5.2 Parameters and Rule Satisfaction

By performing a cross-comparison between results pre-
sented in Figures 3 and 5, we can extract to which
level our model has succeeded in terms of satisfying the
different practices.

If we focus on the reverberation time, RTg; we can
appreciate how it is higher for the tracks labelled as
non-percussive, like voice or keys, and lower for more

®
g 0.8 5
= . O 0
o 06| % o
Q
s O
g 04} . o
St
S
Z 02F o
0 | ? | ?
i 2} i)
< a
Audio Tracks
o Teo O Density
x Clarity + Spectral Centroid
¢ Central Time

Fig. 5: Association of the different parameters to each
track of our simplified multitrack session.

percussive tracks, like the drums. This observation cor-
relates quite well with rules 1 and 2 in Table 1. The
reverb time has been kept higher for sustained sounds
and lower for percussive sounds, but also low for darker
sounds (as rules 3 and 4 on Table 1 may imply). Ad-
ditionally, the fact that the density is higher for more
percussive sounds is also evidence to support rule num-
ber 1 (see Table 1).

Moreover, reverberation applied to voiced sounds should
have a lower central time to represent the higher length
of the early reflections. Our results agree with this rule
since the central times vary in inverse proportion to
those tracks marked as voiced.

If we refer to the brightness of the tracks in terms of
their spectral centroid (as it is the most influencing fac-
tor) we should have a correlation between reverberation
time and brighter tracks (rule 4), but this seems to be an
exception for the keys as the relationship between the
RTyo and the reverb’s spectral centroid also has some
influence over this (rule 17).

5.3 Perceptual Qualities

It is quite complex to establish the limits of what a
“good” reverberator is in terms of its potential use in
music production. In [2], a perceptual evaluation of
reverberation was conducted based on the Relative Re-
verb Loudness (RRL). Although this parameter was
not sufficient to explain the perception of reverbera-
tion, perceived excess of reverberation typically had a
more detrimental effect on subjective preference than a
perceived lack of reverb.

To evaluate the quality our reverberation in terms of this
rule (already included in our PSL model), we computed
the relative reverb loudness over a the 6 multitrack
sessions mentioned before after being processed by
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our reverberator also on a series mixes of these sessions
created by different experts (extracted from the Open
Multitrack Testbed) [33].

While the average RRL for professionally mixed tracks
was on average -12 LU, our algorithm produced mixes
with RRL values around 4.5 LU, way beyond the limit.
This was not surprising, using reverberation as an insert
effect for each track will always result in higher overall
reverberation. In addition, if we look at how the inferred
parameters are distributed for a higher number of tracks
(Figure 7), we are systematically assigning a high RTgg
to all tracks but also a higher central time (longer early
reverberations), which would naturally result in more
perceived reverberation.

However, if we attenuate the wet mix by means of a
gain factor to counteract this effect and obtain a more
balanced final mix (while still retaining the relationship

between the different elements of the wet mix), our re-
sults get much closer to the target RRL with an average
of f-15 LU for a 10/100 wet/dry mix ratio (in %).

6 Discussion

A multitrack reverberator has been developed that is
capable of identifying differences and relationships
among input signals and that applies the effect accord-
ing to a set of rules that have been pre-specified. These
rules do not need to be grounded and can respond to dif-
ferent levels of confidence, plus they can be interpreted
as understandable arithmetic and logic statements.

The results show that our algorithm is able to label
instruments according to different levels of percussivity
with great accuracy within the PSL template and then
use the results in the prediction process.

Although the resulting mix may not be comparable to a
human-made mix in terms of perceptual qualities, we
have to take into account that we have not performed
any pre-processing of the individual tracks # and that
the way we applied the reverberation and the algorithm
itself will always result in higher levels of relative re-
verberation loudness than standard practices.

However, this research explores the potential of HL-
MRFs and PSL in intelligent mixing practices. When
combined together, these two frameworks offer a model
with an intuitive interface and fast inference process
capable of modelling complex relationships between the
data. In addition, the use of PSL templates enables the
introduction of semantic data in the model, which has
proven to be useful for a variety of multitrack mixing
practices [35] [36].

7 Limitations and Further Work

The weights for the different rules were assigned ex-
perimentally based on the amount evidence found in
the literature. However, these weights can be learned
from any specified dataset of mixes using different tech-
niques [18]. As the rules are defined in advance, the
amount of data required for training is substantially less
than for other techniques (such as NNs or SVMs) and
reduces the risk of biasing the results to the data.

The PSL parser we used is still a work in progress and,
therefore, has several syntax limitations. Our work was
hindered by the lack of support from arithmetic rules
with relaxed constraints [19], aggregates and squared
potentials.

Considering the reverberation algorithm we have em-
ployed on this design, it presents some limitations re-
garding parameter control and does not represent the
current state of the art on reverberation algorithms [37].
Furthermore, in order to achieve better results, pre and
post-processing of the different tracks may be neces-
sary.

“4Level adjustment, equalisation, panning, compression, etc.
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